BACKGROUND: The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms. METHODS: We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training. RESULTS: A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = - 0.540, p < 0.001) were the most important factors correlated with the clinical improvement. CONCLUSIONS: Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03162263 .

Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial

Bramanti A.
2018-01-01

Abstract

BACKGROUND: The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms. METHODS: We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training. RESULTS: A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = - 0.540, p < 0.001) were the most important factors correlated with the clinical improvement. CONCLUSIONS: Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03162263 .
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4771627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 90
social impact