The gold-standard methods for anemia diagnosis are complete blood counts and peripheral-smear observations. However, these do not allow for a complete differential diagnosis as that requires biochemical assays, which are label-dependent techniques. On the other hand, recent studies focus on label-free quantitative phase imaging (QPI) of blood samples to investigate blood diseases by using video-based morphological methods. However, when sick cells are very similar to healthy ones in terms of morphometric features, identification of a blood disease becomes challenging even with QPI. Here, we introduce a label-free optical marker (LOM) to detect red-blood-cell (RBC) phenotypes, demonstrating that a single set of all-optical parameters can clearly identify a signature directly related to an erythrocyte disease through modeling each RBC as a biological lens. We tested this novel biophotonic analysis by proving that several inherited anemias, such as iron-deficiency anemia, thalassemia, hereditary spherocytosis, and congenital dyserythropoietic anemia, can be identified and sorted, thus opening a novel route for blood diagnosis on a completely different concept based on LOMs.

Label-Free Optical Marker for Red-Blood-Cell Phenotyping of Inherited Anemias

Bianco V.;Bramanti A.;Ferraro P.
2018

Abstract

The gold-standard methods for anemia diagnosis are complete blood counts and peripheral-smear observations. However, these do not allow for a complete differential diagnosis as that requires biochemical assays, which are label-dependent techniques. On the other hand, recent studies focus on label-free quantitative phase imaging (QPI) of blood samples to investigate blood diseases by using video-based morphological methods. However, when sick cells are very similar to healthy ones in terms of morphometric features, identification of a blood disease becomes challenging even with QPI. Here, we introduce a label-free optical marker (LOM) to detect red-blood-cell (RBC) phenotypes, demonstrating that a single set of all-optical parameters can clearly identify a signature directly related to an erythrocyte disease through modeling each RBC as a biological lens. We tested this novel biophotonic analysis by proving that several inherited anemias, such as iron-deficiency anemia, thalassemia, hereditary spherocytosis, and congenital dyserythropoietic anemia, can be identified and sorted, thus opening a novel route for blood diagnosis on a completely different concept based on LOMs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4771632
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact