Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic actions involved in the pathogenesis of autoimmune disorders, including Multiple Sclerosis (MS). We have first evaluated in silico the involvement of MIF, its homologue D-DT, and the receptors CD74, CD44, CXCR2 and CXCR4 in encephalitogenic T cells from a mouse model of MS, the Experimental Allergic Encephalomyelitis (EAE), as well as in circulating T helper cells from MS patients. We show an upregulation of the receptors involved in MIF signaling both in the animal model and in patients. Also, a significant increase in MIF receptors is found in the CNS lesions associated to MS. Finally, the specific inhibitor of MIF, ISO-1, improved both ex vivo and in vivo the features of EAE. Overall, our data indicate that there is a significant involvement of the MIF pathway in MS ethiopathogenesis and that interventions specifically blocking MIF receptors may represent useful therapeutic approaches in the clinical setting.
Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: In silico and in vivo evidences
Bramanti A.;
2018-01-01
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic actions involved in the pathogenesis of autoimmune disorders, including Multiple Sclerosis (MS). We have first evaluated in silico the involvement of MIF, its homologue D-DT, and the receptors CD74, CD44, CXCR2 and CXCR4 in encephalitogenic T cells from a mouse model of MS, the Experimental Allergic Encephalomyelitis (EAE), as well as in circulating T helper cells from MS patients. We show an upregulation of the receptors involved in MIF signaling both in the animal model and in patients. Also, a significant increase in MIF receptors is found in the CNS lesions associated to MS. Finally, the specific inhibitor of MIF, ISO-1, improved both ex vivo and in vivo the features of EAE. Overall, our data indicate that there is a significant involvement of the MIF pathway in MS ethiopathogenesis and that interventions specifically blocking MIF receptors may represent useful therapeutic approaches in the clinical setting.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.