The properties of a supersolid state (SS) in quasi-one-dimensional dipolar Bose–Einstein condensate is studied, considering two possible mechanisms of realization—due to repulsive three-body atomic interactions and quantum fluctuations in the framework of the Lee–Huang–Yang theory. The role of both mechanisms in the formation of SS properties has been emphasized. The proposed theoretical model, based on minimization of the energy functional, allows evaluating the amplitude of the SS for an arbitrary set of parameters in the extended Gross–Pitaevskii equation (eGPE). To explore the dynamics of the SS first we numerically construct its ground state in different settings, including periodic boundary conditions, box-like trap and parabolic potential, then impose a perturbation. In oscillations of the perturbed supersolid we observe the key manifestation of SS, namely the free flow of the superfluid fraction through the crystalline component of the system. Two distinct oscillation frequencies of the supersolid associated with the superfluid fraction and crystalline components of the wave function are identified from numerical simulations of the eGPE.

Oscillations of a quasi-one-dimensional dipolar supersolid

Salerno M.
2021-01-01

Abstract

The properties of a supersolid state (SS) in quasi-one-dimensional dipolar Bose–Einstein condensate is studied, considering two possible mechanisms of realization—due to repulsive three-body atomic interactions and quantum fluctuations in the framework of the Lee–Huang–Yang theory. The role of both mechanisms in the formation of SS properties has been emphasized. The proposed theoretical model, based on minimization of the energy functional, allows evaluating the amplitude of the SS for an arbitrary set of parameters in the extended Gross–Pitaevskii equation (eGPE). To explore the dynamics of the SS first we numerically construct its ground state in different settings, including periodic boundary conditions, box-like trap and parabolic potential, then impose a perturbation. In oscillations of the perturbed supersolid we observe the key manifestation of SS, namely the free flow of the superfluid fraction through the crystalline component of the system. Two distinct oscillation frequencies of the supersolid associated with the superfluid fraction and crystalline components of the wave function are identified from numerical simulations of the eGPE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4771965
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact