Melanoma is considered the deadliest skin cancer and when it is in an advanced state it is difficult to treat. Diagnoses are visually performed by dermatologists, by naked-eye observation. This paper proposes an augmented reality smartphone application for supporting the dermatologist in the real-time analysis of a skin lesion. The app augments the camera view with information related to the lesion features generally measured by the dermatologist for formulating the diagnosis. The lesion is also classified by a deep learning approach for identifying melanoma. The real-time process adopted for generating the augmented content is described. The real-time performances are also evaluated and a user study is also conducted. Results revealed that the real-time process may be entirely executed on the Smartphone and that the support provided is well judged by the target users.

A mobile augmented reality application for supporting real-time skin lesion analysis based on deep learning

Francese R.;Frasca M.;Risi M.;Tortora G.
2021-01-01

Abstract

Melanoma is considered the deadliest skin cancer and when it is in an advanced state it is difficult to treat. Diagnoses are visually performed by dermatologists, by naked-eye observation. This paper proposes an augmented reality smartphone application for supporting the dermatologist in the real-time analysis of a skin lesion. The app augments the camera view with information related to the lesion features generally measured by the dermatologist for formulating the diagnosis. The lesion is also classified by a deep learning approach for identifying melanoma. The real-time process adopted for generating the augmented content is described. The real-time performances are also evaluated and a user study is also conducted. Results revealed that the real-time process may be entirely executed on the Smartphone and that the support provided is well judged by the target users.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4772021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact