While there are several analytical models dedicated to vertical insulated gate bipolar transistors (IGBTs) there is virtually no reliable model for lateral IGBTs (LIGBTs). LIGBTs are increasingly popular in smart power and power integrated circuits, especially in those applications where high voltage (e.g., 600 V) and high current capability (e.g., 30 A/cm2) are required. In this paper, we report for the first time a complete analytical model for the LIGBT based on semiconductor physics with very few fitting parameters. The model is implemented in the widely available circuit simulator PSpice. The model consistently describes the current and voltage waveforms for all loading conditions. The model is assessed against finite element device simulations and experimental results.
An analytical model for the lateral insulated gate bipolar transistor(LIGBT) on thin SOI
NAPOLI, ETTORE;
2006-01-01
Abstract
While there are several analytical models dedicated to vertical insulated gate bipolar transistors (IGBTs) there is virtually no reliable model for lateral IGBTs (LIGBTs). LIGBTs are increasingly popular in smart power and power integrated circuits, especially in those applications where high voltage (e.g., 600 V) and high current capability (e.g., 30 A/cm2) are required. In this paper, we report for the first time a complete analytical model for the LIGBT based on semiconductor physics with very few fitting parameters. The model is implemented in the widely available circuit simulator PSpice. The model consistently describes the current and voltage waveforms for all loading conditions. The model is assessed against finite element device simulations and experimental results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.