There is growing demand in industrialized and developing countries to provide people and structures with effective earthquake protection. Here, we employ architectured material concepts and a bio-inspired approach to trail-blaze a new path to seismic isolation. We develop a novel seismic isolator whose unit cell is formed by linkages that replicate the bones of human limbs. Deformable tendons connect the limb members to a central post carrying the vertical load, which can slide against the bottom plate of the system. While the displacement capacity of the device depends only on the geometry of the limbs, its vibration period is tuned by dynamically stretching the tendons in the nonlinear stress–strain regime, so as to avoid resonance with seismic excitations. This biomimetic, sliding–stretching isolator can be scaled to seismically protect infrastructure, buildings, artworks and equipment with customized properties and sustainable materials. It does not require heavy industry or expensive materials and is easily assembled from metallic parts and 3D-printed components.

A biomimetic sliding–stretching approach to seismic isolation

Fraternali F.
;
Amendola A.;Benzoni G.;
2021

Abstract

There is growing demand in industrialized and developing countries to provide people and structures with effective earthquake protection. Here, we employ architectured material concepts and a bio-inspired approach to trail-blaze a new path to seismic isolation. We develop a novel seismic isolator whose unit cell is formed by linkages that replicate the bones of human limbs. Deformable tendons connect the limb members to a central post carrying the vertical load, which can slide against the bottom plate of the system. While the displacement capacity of the device depends only on the geometry of the limbs, its vibration period is tuned by dynamically stretching the tendons in the nonlinear stress–strain regime, so as to avoid resonance with seismic excitations. This biomimetic, sliding–stretching isolator can be scaled to seismically protect infrastructure, buildings, artworks and equipment with customized properties and sustainable materials. It does not require heavy industry or expensive materials and is easily assembled from metallic parts and 3D-printed components.
File in questo prodotto:
File Dimensione Formato  
VoR_NDYN_SSI_paper.pdf

accesso aperto

Descrizione: Version of Record
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4773005
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact