In this work we explore the interaction of HS- with a family of fluorescent zinc complexes. In particular we selected a family of complexes with N,O-bidentate ligands aiming at assessing whether the zinc-chelating ligand plays a role in influencing the reactivity of HS- with the complexes under investigation. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes included in this study. The results highlight the potential of the devised systems to be used as HS-/H2S fluorescent sensors via a coordinative-based approach. To shed light on the species formed in solution when HS-/H2S interacts with the title complexes and aiming to rationalize the photophysical properties of the sensing constructs, we performed a computational analysis based on the time dependent density functional theory (TD-DFT). Preliminary bio-imaging experiments were also performed and the results indicate the potential of this class of compounds as probes for the detection of H2S in living cells. This journal is
Imidazo-pyridine-based zinc(ii) complexes as fluorescent hydrogen sulfide probes
Strianese M.
;Guarnieri D.;Lamberti M.;Pellecchia C.
2021
Abstract
In this work we explore the interaction of HS- with a family of fluorescent zinc complexes. In particular we selected a family of complexes with N,O-bidentate ligands aiming at assessing whether the zinc-chelating ligand plays a role in influencing the reactivity of HS- with the complexes under investigation. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes included in this study. The results highlight the potential of the devised systems to be used as HS-/H2S fluorescent sensors via a coordinative-based approach. To shed light on the species formed in solution when HS-/H2S interacts with the title complexes and aiming to rationalize the photophysical properties of the sensing constructs, we performed a computational analysis based on the time dependent density functional theory (TD-DFT). Preliminary bio-imaging experiments were also performed and the results indicate the potential of this class of compounds as probes for the detection of H2S in living cells. This journal isFile | Dimensione | Formato | |
---|---|---|---|
paper dalton B.doc
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
4.65 MB
Formato
Microsoft Word
|
4.65 MB | Microsoft Word | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.