Fermi golden rule and second-order cumulant expansion of the time-dependent density matrix have been used to compute from first principles the rate of intersystem crossing in benzophenone, using minimum-energy geometries and normal modes of vibrations computed at the TDDFT/CAM-B3LYP level. Both approaches yield reliable values of the S1 decay rate, the latter being almost in quantitative agreement with the results of time-dependent spectroscopic measurements (0.154 ps-1 observed vs 0.25 ps-1 predicted). The Fermi golden rule slightly overestimates the decay rate of S1 state (kd = 0.45 ps-1) but provides better insights into the chemico-physical parameters, which govern the transition from a thermally equilibrated population of S1, showing that the indirect mechanism is much faster than the direct one because of the vanishingly small Franck-Condon weighted density of states at ΔE of transition.

Reliable Predictions of Benzophenone Singlet-Triplet Transition Rates: A Second-Order Cumulant Approach

Velardo A.
Membro del Collaboration Group
;
Landi A.
Membro del Collaboration Group
;
Borrelli R.
Membro del Collaboration Group
;
Peluso A.
Membro del Collaboration Group
2021-01-01

Abstract

Fermi golden rule and second-order cumulant expansion of the time-dependent density matrix have been used to compute from first principles the rate of intersystem crossing in benzophenone, using minimum-energy geometries and normal modes of vibrations computed at the TDDFT/CAM-B3LYP level. Both approaches yield reliable values of the S1 decay rate, the latter being almost in quantitative agreement with the results of time-dependent spectroscopic measurements (0.154 ps-1 observed vs 0.25 ps-1 predicted). The Fermi golden rule slightly overestimates the decay rate of S1 state (kd = 0.45 ps-1) but provides better insights into the chemico-physical parameters, which govern the transition from a thermally equilibrated population of S1, showing that the indirect mechanism is much faster than the direct one because of the vanishingly small Franck-Condon weighted density of states at ΔE of transition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4776307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact