The time needed to establish electronic resonant conditions for charge transfer in oxidized DNA has been evaluated by molecular dynamics simulations followed by QM/MM computations which include counterions and a realistic solvation shell. The solvent response is predicted to take ca. 800–1000 ps to bring two guanine sites into resonance, a range of values in reasonable agreement with the estimate previously obtained by a kinetic model able to correctly reproduce the observed yield ratios of oxidative damage for several sequences of oxidized DNA.
Titolo: | The time scale of electronic resonance in oxidized dna as modulated by solvent response: An md/qm-mm study | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11386/4776309 | |
Appare nelle tipologie: | 1.1.2 Articolo su rivista con ISSN |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.