The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.
Full-scale odor abatement technologies in wastewater treatment plants (WWTPs): A review
Senatore V.;Zarra T.;Galang M. G.;Oliva G.
;Buonerba A.;Belgiorno V.;Naddeo V.
2021-01-01
Abstract
The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.