The use of a wavelet-Markov local descriptor, which exploits joint dependencies among wavelet coefficients, for fingerprint liveness detection, is proposed. On the LivDet 2009 datasets, a properly trained support vector machine classifier based on this descriptor guarantees an average error below 3%, as opposed to the 8% average error of the best conventional techniques.

Wavelet-Markov local descriptor for detecting fake fingerprints

GRAGNANIELLO, DIEGO;SANSONE, CARLO;
2014-01-01

Abstract

The use of a wavelet-Markov local descriptor, which exploits joint dependencies among wavelet coefficients, for fingerprint liveness detection, is proposed. On the LivDet 2009 datasets, a properly trained support vector machine classifier based on this descriptor guarantees an average error below 3%, as opposed to the 8% average error of the best conventional techniques.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4776937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact