Nowadays both sciences and technology, including Intelligent Transportation Systems, are involved in improving current approaches. Overview studies give you fast, comprehensive, and easy access to all of the existing approaches in the field. With this inspiration, and the effect of traffic congestion as a challenging issue that affects the regular daily lives of millions of people around the world, in this work, we concentrate on communications paradigms that can be used to address traffic congestion problems. Vehicular Ad-hoc Networking (VANET), a modern networking technology, provides innovative techniques for vehicular traffic control and management. Virtual traffic light (VTL) methods for VANET seek to address traffic issues through using vehicular network communication models. These communication paradigms can be classified into four scenarios: Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) and Vehicle-to-Network (V2N) and Vehicle-toPedestrian (V2P). In general, these four scenarios are included in the category of vehicle-to-everything (V2X). Therefore, in this paper, we provide an overview of the most important scenarios of V2X communications based on their characteristics, methodologies, and assessments. We also investigate the applications and challenges of V2X.
Vehicle-to-Everything (V2X) Communication Scenarios for Vehicular Ad-hoc Networking (VANET): An Overview
Farsimadan, Eslam
;Palmieri, Francesco;Moradi, Leila;Conte, Dajana;Paternoster, Beatrice
2021-01-01
Abstract
Nowadays both sciences and technology, including Intelligent Transportation Systems, are involved in improving current approaches. Overview studies give you fast, comprehensive, and easy access to all of the existing approaches in the field. With this inspiration, and the effect of traffic congestion as a challenging issue that affects the regular daily lives of millions of people around the world, in this work, we concentrate on communications paradigms that can be used to address traffic congestion problems. Vehicular Ad-hoc Networking (VANET), a modern networking technology, provides innovative techniques for vehicular traffic control and management. Virtual traffic light (VTL) methods for VANET seek to address traffic issues through using vehicular network communication models. These communication paradigms can be classified into four scenarios: Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) and Vehicle-to-Network (V2N) and Vehicle-toPedestrian (V2P). In general, these four scenarios are included in the category of vehicle-to-everything (V2X). Therefore, in this paper, we provide an overview of the most important scenarios of V2X communications based on their characteristics, methodologies, and assessments. We also investigate the applications and challenges of V2X.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.