Regenerative braking can significantly improve the energy efficiency of hybrid and electric vehicles, and many studies have been carried out in order to improve and optimize the energy recovery of the braking energy. In the paper, the optimization of regenerative braking by means of braking force modulation is analysed, with specific application to the case of cars converted into Through-the-road (TTR) hybrid vehicles, and an optimal modulation strategy is also proposed. Car hybridization is an emerging topic since it may be a feasible, low-cost, intermediate step toward the green transition of the transport system with a potential positive impact in third-world countries. In this case, the presence of two in-wheel-motors installed on the rear axle and of the original mechanical braking system mounted on the vehicle can result in limited braking energy recovery in the absence of proper braking management strategies. A vehicle longitudinal model has been integrated with an algorithm of non-linear constrained optimization to maximize the energy recovery for various starting speed and stopping time, also considering the efficiency map and power limitations of the electric components. In the best conditions, the recovery can reach about 40% of the vehicle energy, selecting the best deceleration at each speed and proper modulation, and with a realistic estimate of the grip coefficient.

Optimal modulation of regenerative braking in through-the-road hybridized vehicles

Rizzo G.
;
Tiano F. A.;
2021-01-01

Abstract

Regenerative braking can significantly improve the energy efficiency of hybrid and electric vehicles, and many studies have been carried out in order to improve and optimize the energy recovery of the braking energy. In the paper, the optimization of regenerative braking by means of braking force modulation is analysed, with specific application to the case of cars converted into Through-the-road (TTR) hybrid vehicles, and an optimal modulation strategy is also proposed. Car hybridization is an emerging topic since it may be a feasible, low-cost, intermediate step toward the green transition of the transport system with a potential positive impact in third-world countries. In this case, the presence of two in-wheel-motors installed on the rear axle and of the original mechanical braking system mounted on the vehicle can result in limited braking energy recovery in the absence of proper braking management strategies. A vehicle longitudinal model has been integrated with an algorithm of non-linear constrained optimization to maximize the energy recovery for various starting speed and stopping time, also considering the efficiency map and power limitations of the electric components. In the best conditions, the recovery can reach about 40% of the vehicle energy, selecting the best deceleration at each speed and proper modulation, and with a realistic estimate of the grip coefficient.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4777943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact