Considering that Prostate Cancer (PCa) is the most frequently diagnosed tumor in Western men, considerable attention has been devoted in computer-assisted PCa detection approaches. However, this task still represents an open research question. In the clinical practice, multiparametric Magnetic Resonance Imaging (MRI) is becoming the most used modality, aiming at defining biomarkers for PCa. In the latest years, deep learning techniques have boosted the performance in prostate MR image analysis and classification. This work explores the use of the Semantic Learning Machine (SLM) neuroevolution algorithm to replace the backpropagation algorithm commonly used in the last fully-connected layers of Convolutional Neural Networks (CNNs). We analyzed the non-contrast-enhanced multispectral MRI sequences included in the PROSTATEx dataset, namely: T2-weighted, Proton Density weighted, Diffusion Weighted Imaging. The experimental results show that the SLM significantly outperforms XmasNet, a state-of-the-art CNN. In particular, with respect to XmasNet, the SLM achieves higher classification accuracy (without neither pre-training the underlying CNN nor relying on backprogation) as well as a speed-up of one order of magnitude.

Semantic learning machine improves the CNN-based detection of prostate cancer in non-contrast-enhanced MRI

Rundo L.;
2019-01-01

Abstract

Considering that Prostate Cancer (PCa) is the most frequently diagnosed tumor in Western men, considerable attention has been devoted in computer-assisted PCa detection approaches. However, this task still represents an open research question. In the clinical practice, multiparametric Magnetic Resonance Imaging (MRI) is becoming the most used modality, aiming at defining biomarkers for PCa. In the latest years, deep learning techniques have boosted the performance in prostate MR image analysis and classification. This work explores the use of the Semantic Learning Machine (SLM) neuroevolution algorithm to replace the backpropagation algorithm commonly used in the last fully-connected layers of Convolutional Neural Networks (CNNs). We analyzed the non-contrast-enhanced multispectral MRI sequences included in the PROSTATEx dataset, namely: T2-weighted, Proton Density weighted, Diffusion Weighted Imaging. The experimental results show that the SLM significantly outperforms XmasNet, a state-of-the-art CNN. In particular, with respect to XmasNet, the SLM achieves higher classification accuracy (without neither pre-training the underlying CNN nor relying on backprogation) as well as a speed-up of one order of magnitude.
2019
9781450367486
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4780153
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact