Class imbalance problems have attracted the research community, but a few works have focused on feature selection with imbalanced datasets. To handle class imbalance problems, we developed a novel fitness function for feature selection using the chaotic salp swarm optimization algorithm, an efficient meta-heuristic optimization algorithm that has been successfully used in a wide range of optimization problems. This paper proposes an AdaBoost algorithm with chaotic salp swarm optimization. The most discriminating features are selected using salp swarm optimization, and AdaBoost classifiers are thereafter trained on the features selected. Experiments show the ability of the proposed technique to find the optimal features with performance maximization of AdaBoost.

An efficient chaotic salp swarm optimization approach based on ensemble algorithm for class imbalance problems

Fiore U.
2021

Abstract

Class imbalance problems have attracted the research community, but a few works have focused on feature selection with imbalanced datasets. To handle class imbalance problems, we developed a novel fitness function for feature selection using the chaotic salp swarm optimization algorithm, an efficient meta-heuristic optimization algorithm that has been successfully used in a wide range of optimization problems. This paper proposes an AdaBoost algorithm with chaotic salp swarm optimization. The most discriminating features are selected using salp swarm optimization, and AdaBoost classifiers are thereafter trained on the features selected. Experiments show the ability of the proposed technique to find the optimal features with performance maximization of AdaBoost.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4780493
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact