Although the blockchain technology is gaining a widespread adoption across multiple sectors, its most popular application is in cryptocurrency. The decentralized and anonymous nature of transactions in a cryptocurrency blockchain has attracted a multitude of participants, and now significant amounts of money are being exchanged by the day. This raises the need of analyzing the blockchain to discover information related to the nature of participants in transactions. This study focuses on the identification for risky and non-risky blocks in a blockchain. In this paper, the proposed approach is to use ensemble learning with or without feature selection using correlation-based feature selection. Ensemble learning yielded good results in the experiments, but class-wise analysis reveals that ensemble learning with feature selection improves even further. After training Machine Learning classifiers on the dataset, we observe an improvement in accuracy of 2–3% and in F-score of 7–8%.

Improved Classification of Blockchain Transactions Using Feature Engineering and Ensemble Learning

Fiore U.;
2022

Abstract

Although the blockchain technology is gaining a widespread adoption across multiple sectors, its most popular application is in cryptocurrency. The decentralized and anonymous nature of transactions in a cryptocurrency blockchain has attracted a multitude of participants, and now significant amounts of money are being exchanged by the day. This raises the need of analyzing the blockchain to discover information related to the nature of participants in transactions. This study focuses on the identification for risky and non-risky blocks in a blockchain. In this paper, the proposed approach is to use ensemble learning with or without feature selection using correlation-based feature selection. Ensemble learning yielded good results in the experiments, but class-wise analysis reveals that ensemble learning with feature selection improves even further. After training Machine Learning classifiers on the dataset, we observe an improvement in accuracy of 2–3% and in F-score of 7–8%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4780499
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact