Recently, the use of metal oxides as inexpensive and efficient catalysts has been considered by researchers. In this work, we introduce a new nanocatalyst including a mixed metal oxide, consisting of manganese oxide, cerium oxide, and reduced graphene oxide (Mn3O4-CeO2-rGO) by the hydrothermal method. The synthesized nanocatalyst was evaluated for the methanol oxidation reaction. The synergetic effect of metal oxides on the surface of rGO was investigated. Mn3O4-CeO2-rGO showed an oxidation current density of 17.7 mA/cm2 in overpotential of 0.51 V and 91% stability after 500 consecutive rounds of cyclic voltammetry. According to these results, the synthesized nanocatalyst can be an attractive and efficient option in the methanol oxidation reaction process.
Fabrication of Mn3O4-CeO2-rGO as Nanocatalyst for Electro-Oxidation of Methanol
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Di Bartolomeo, Antonio
						
						
						
							Writing – Review & Editing
	
		
		
	
			2022
Abstract
Recently, the use of metal oxides as inexpensive and efficient catalysts has been considered by researchers. In this work, we introduce a new nanocatalyst including a mixed metal oxide, consisting of manganese oxide, cerium oxide, and reduced graphene oxide (Mn3O4-CeO2-rGO) by the hydrothermal method. The synthesized nanocatalyst was evaluated for the methanol oxidation reaction. The synergetic effect of metal oxides on the surface of rGO was investigated. Mn3O4-CeO2-rGO showed an oxidation current density of 17.7 mA/cm2 in overpotential of 0.51 V and 91% stability after 500 consecutive rounds of cyclic voltammetry. According to these results, the synthesized nanocatalyst can be an attractive and efficient option in the methanol oxidation reaction process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


