The development and analysis of increasingly complex systems require the intensive use of models and of sophisticated approaches to systems modeling. This paper focuses on workflows supporting the solution of complex, composed, formal models used to study and/or develop real-world systems. The workflows we deal with orchestrate multiple distributed tools and applications in order to provide the user with a powerful, composed solution environment. The aim is to automate and reproduce analysis and simulation tasks starting from a high level, graph-based description of the model to be solved. This paper thus introduces solution workflows and presents the Solution Process Definition Language (SPDL) for the specification of solution workflows processes. One of the key elements of SPDL is its formal semantics, which allow for unambiguous specification of its constructs and validation of the workflows. A workflow pattern analysis of SPDL is also provided. SPDL and its execution environment, the OsMoSys framework, are then applied to a homeland security scenario. The OsMoSys framework and the SPDL language provide a practical contribution to the applicability of model engineering techniques by enabling the semiautomatic solution of complex models.
Solution Workflows for Model-Based Analysis of Complex Systems
MOSCATO, Francesco;
2012-01-01
Abstract
The development and analysis of increasingly complex systems require the intensive use of models and of sophisticated approaches to systems modeling. This paper focuses on workflows supporting the solution of complex, composed, formal models used to study and/or develop real-world systems. The workflows we deal with orchestrate multiple distributed tools and applications in order to provide the user with a powerful, composed solution environment. The aim is to automate and reproduce analysis and simulation tasks starting from a high level, graph-based description of the model to be solved. This paper thus introduces solution workflows and presents the Solution Process Definition Language (SPDL) for the specification of solution workflows processes. One of the key elements of SPDL is its formal semantics, which allow for unambiguous specification of its constructs and validation of the workflows. A workflow pattern analysis of SPDL is also provided. SPDL and its execution environment, the OsMoSys framework, are then applied to a homeland security scenario. The OsMoSys framework and the SPDL language provide a practical contribution to the applicability of model engineering techniques by enabling the semiautomatic solution of complex models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.