The use of statistical tools for predicting the winner in tennis matches has enjoyed an increase in popularity over the last two decades and, currently, a variety of methods are available. In particular, paired comparison approaches make use of latent ability estimates or rating calculations to determine the probability that a player will win a match. In this paper, we extend this latter class of models by using network indicators for the predictions. We propose a measure based on eigenvector centrality. Unlike what happens for the standard paired comparisons class (where the rates or latent abilities only change at time t for those players involved in the matches at time t), the use of a centrality measure allows the ratings of the whole set of players to vary every time there is a new match. The resulting ratings are then used as a covariate in a simple logit model. Evaluating the proposed approach with respect to some popular competing specifications, we find that the centrality-based approach largely and consistently outperforms all the alternative models considered in terms of the prediction accuracy. Finally, the proposed method also achieves positive betting results.

A new model for predicting the winner in tennis based on the eigenvector centrality

Candila Vincenzo;
2022

Abstract

The use of statistical tools for predicting the winner in tennis matches has enjoyed an increase in popularity over the last two decades and, currently, a variety of methods are available. In particular, paired comparison approaches make use of latent ability estimates or rating calculations to determine the probability that a player will win a match. In this paper, we extend this latter class of models by using network indicators for the predictions. We propose a measure based on eigenvector centrality. Unlike what happens for the standard paired comparisons class (where the rates or latent abilities only change at time t for those players involved in the matches at time t), the use of a centrality measure allows the ratings of the whole set of players to vary every time there is a new match. The resulting ratings are then used as a covariate in a simple logit model. Evaluating the proposed approach with respect to some popular competing specifications, we find that the centrality-based approach largely and consistently outperforms all the alternative models considered in terms of the prediction accuracy. Finally, the proposed method also achieves positive betting results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4782604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact