Polyphenolic esters (PEs) are valuable chemical compounds that display a wide spectrum of activities (e.g., anti-oxidative effects). As a result, their production through catalytic routes is an attrac-tive field of research. The present review aims to discuss recent studies from the literature regarding the catalytic production of PEs from biomass feedstocks, namely, naturally occurred polyphenolic compounds. Several synthetic approaches are reported in the literature, mainly bio-catalysis and to a lesser extent acid catalysis. Immobilized lipases (e.g., Novozym 435) are the preferred enzymes thanks to their high reactivity, selectivity and reusability. Acid catalysis is principally investigated for the esterification of polyphenolic acids with fatty alcohols and/or glycerol, using both homogeneous (p-toluensulfonic acid, sulfonic acid and ionic liquids) and heterogeneous (strongly acidic cation exchange resins) catalysts. Based on the reviewed publications, we propose some suggestions to improve the synthesis of PEs with the aim of increasing the greenness of the overall production process. In fact, much more attention should be paid to the use of new and efficient acid catalysts and their reuse for multiple reaction cycles.

Catalytic Routes to Produce Polyphenolic Esters (PEs) from Biomass Feedstocks

Faggiano A.;Ricciardi M.
;
Proto A.
2022-01-01

Abstract

Polyphenolic esters (PEs) are valuable chemical compounds that display a wide spectrum of activities (e.g., anti-oxidative effects). As a result, their production through catalytic routes is an attrac-tive field of research. The present review aims to discuss recent studies from the literature regarding the catalytic production of PEs from biomass feedstocks, namely, naturally occurred polyphenolic compounds. Several synthetic approaches are reported in the literature, mainly bio-catalysis and to a lesser extent acid catalysis. Immobilized lipases (e.g., Novozym 435) are the preferred enzymes thanks to their high reactivity, selectivity and reusability. Acid catalysis is principally investigated for the esterification of polyphenolic acids with fatty alcohols and/or glycerol, using both homogeneous (p-toluensulfonic acid, sulfonic acid and ionic liquids) and heterogeneous (strongly acidic cation exchange resins) catalysts. Based on the reviewed publications, we propose some suggestions to improve the synthesis of PEs with the aim of increasing the greenness of the overall production process. In fact, much more attention should be paid to the use of new and efficient acid catalysts and their reuse for multiple reaction cycles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4784247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact