In this work, the authors explored the interaction of a suite of fluorescent zinc complexes with H2S. The authors provide evidence that HS− binds the zinc center of all the complexes under investigation, allowing them to possibly function as sensors by a ‘coordinative-based’ approach. Naked-eye color changes occur when treating the systems with HS−, so the fluorescence responses are modulated by the presence of HS−, which has been related to a change in the energy level and coupling of excited states through a computational study. The results show the potential of the systems to function as HS−/H2S colorimetric and fluorescent sensors. Paper-strip-based sensing experiments foresee the potential of using this family of complexes as chemosensors of HS− in more complex biological fluids.
Paper-Strip-Based Sensors for H2S Detection: A Proof-of-Principle Study
Strianese M.
;Guarnieri D.;Landi A.;Peluso A.;Pellecchia C.
;Lamberti M.
2022-01-01
Abstract
In this work, the authors explored the interaction of a suite of fluorescent zinc complexes with H2S. The authors provide evidence that HS− binds the zinc center of all the complexes under investigation, allowing them to possibly function as sensors by a ‘coordinative-based’ approach. Naked-eye color changes occur when treating the systems with HS−, so the fluorescence responses are modulated by the presence of HS−, which has been related to a change in the energy level and coupling of excited states through a computational study. The results show the potential of the systems to function as HS−/H2S colorimetric and fluorescent sensors. Paper-strip-based sensing experiments foresee the potential of using this family of complexes as chemosensors of HS− in more complex biological fluids.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.