Amaranth is one of the synthetic azo colorants used to improve the appearance and to increase the appeal of some foods and soft drinks. The excessive consumption of amaranth can be associated with health side effects, emphasizing the need to monitor this food dye. Accordingly, the present study aimed to introduce an electrochemical sensor of glassy carbon electrode (GCE) modified with N-doped reduced graphene oxide (N-rGO), N-rGO/GCE, to detect the amaranth sensitively and rapidly. Several electrochemical techniques such as differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and cyclic voltammetry (CV) are exploited for the evaluation of the efficiency of the developed electrode for the detection of amaranth. We found that N-rGO/GCE enhanced amaranth oxidation, thus significantly elevating the current signal. Amaranth showed that calibration curves ranged from 0.1 to 600.0 µM, and the limit of detection (LOD) (S/N = 3) was 0.03 µM. Finally, the developed sensor was effectively applied for real samples (tap water, apple juice, and orange juice) with acceptable recovery values from 96.0 to 104.3%.

Glassy Carbon Electrode Modified with N-Doped Reduced Graphene Oxide Sheets as an Effective Electrochemical Sensor for Amaranth Detection

Di Bartolomeo A.
Writing – Review & Editing
2022-01-01

Abstract

Amaranth is one of the synthetic azo colorants used to improve the appearance and to increase the appeal of some foods and soft drinks. The excessive consumption of amaranth can be associated with health side effects, emphasizing the need to monitor this food dye. Accordingly, the present study aimed to introduce an electrochemical sensor of glassy carbon electrode (GCE) modified with N-doped reduced graphene oxide (N-rGO), N-rGO/GCE, to detect the amaranth sensitively and rapidly. Several electrochemical techniques such as differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and cyclic voltammetry (CV) are exploited for the evaluation of the efficiency of the developed electrode for the detection of amaranth. We found that N-rGO/GCE enhanced amaranth oxidation, thus significantly elevating the current signal. Amaranth showed that calibration curves ranged from 0.1 to 600.0 µM, and the limit of detection (LOD) (S/N = 3) was 0.03 µM. Finally, the developed sensor was effectively applied for real samples (tap water, apple juice, and orange juice) with acceptable recovery values from 96.0 to 104.3%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4785419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact