To define a vaccination policy and antiviral treatment against the spreading of viral infections a nonlinear optimal (H-infinity) control approach is proposed. Actually, because of the scarcity of the resources for treating infectious diseases in terms of vaccines, antiviral drugs and other medical facilities, there is need to implement optimal control against the epidemics deployment. In this approach, the state-space model of the epidemics dynamics undergoes first approximate linearization around a temporary operating point which is recomputed at each time-step of the control method. The linearization is based on Taylor series expansion and on the computation of the associated Jacobian matrices. Next, an optimal (H-infinity) feedback controller is developed for the approximately linearized model of the epidemics. To compute the controller's feedback gains an algebraic Riccati equation is solved at each iteration of the control algorithm. Furthermore, the global asymptotic stability properties of the control scheme are proven through Lyapunov stability analysis. This paper's results confirm that optimal control of the infectious disease dynamics allows for eliminating its spreading while also keeping moderate the consumption of the related medication, that is vaccines and antiviral drugs.

A nonlinear optimal control method against the spreading of epidemics

Rigatos G.
;
Cuccurullo G.
2022-01-01

Abstract

To define a vaccination policy and antiviral treatment against the spreading of viral infections a nonlinear optimal (H-infinity) control approach is proposed. Actually, because of the scarcity of the resources for treating infectious diseases in terms of vaccines, antiviral drugs and other medical facilities, there is need to implement optimal control against the epidemics deployment. In this approach, the state-space model of the epidemics dynamics undergoes first approximate linearization around a temporary operating point which is recomputed at each time-step of the control method. The linearization is based on Taylor series expansion and on the computation of the associated Jacobian matrices. Next, an optimal (H-infinity) feedback controller is developed for the approximately linearized model of the epidemics. To compute the controller's feedback gains an algebraic Riccati equation is solved at each iteration of the control algorithm. Furthermore, the global asymptotic stability properties of the control scheme are proven through Lyapunov stability analysis. This paper's results confirm that optimal control of the infectious disease dynamics allows for eliminating its spreading while also keeping moderate the consumption of the related medication, that is vaccines and antiviral drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4786619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact