(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH-US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 μM TE/g) was higher than that of the free compound (3521 ± 271 μM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.

Design of Nanotechnological Carriers for Ocular Delivery of Mangiferin: Preformulation Study

Lauro, M. R.;Castelli, F.;
2022

Abstract

(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH-US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 μM TE/g) was higher than that of the free compound (3521 ± 271 μM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4790650
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact