N2O has a global warming potential about 300 times higher than CO2, and even if its contribution to the greenhouse effect is underrated, its abatement in industrial production’s tail gas has become imperative. In this work, we investigate the feasibility of the microwave (MW)‐assisted regeneration of a 13X zeolite bed for N2O capture from tail gases. Several consecutive adsorption– desorption cycles were performed to verify the microwave heating effect on the zeolite’s adsorption properties. The results of the experimental tests, performed at N2O concentrations of 10, 20 and 40% vol, highlighted that (i) the steps are perfectly repeatable in terms of both adsorbed and desorbed amount of N2O, meaning that the MWs did not damage the zeolite’s structure, (ii) the presence of both H2O and O2 in the feed stream irreversibly reduces the adsorbent capacity due to nitrites and nitrates formation, and (iii) the presence of H2O alone with N2O still reduces the adsorbent capacity of the zeolites, which can be recovered through MW‐assisted regeneration at 350 °C. Moreover, the MW‐assisted TSA assured an energy and purge gas saving up to 63% and 82.5%, respectively, compared to a traditional regeneration process, resulting in effective process intensification.

MW‐Assisted Regeneration of 13X Zeolites after N2O Adsorption from Concentrated Streams: A Process Intensification

Meloni E.
;
Martino M.;Pierro M.;Palma V.
2022-01-01

Abstract

N2O has a global warming potential about 300 times higher than CO2, and even if its contribution to the greenhouse effect is underrated, its abatement in industrial production’s tail gas has become imperative. In this work, we investigate the feasibility of the microwave (MW)‐assisted regeneration of a 13X zeolite bed for N2O capture from tail gases. Several consecutive adsorption– desorption cycles were performed to verify the microwave heating effect on the zeolite’s adsorption properties. The results of the experimental tests, performed at N2O concentrations of 10, 20 and 40% vol, highlighted that (i) the steps are perfectly repeatable in terms of both adsorbed and desorbed amount of N2O, meaning that the MWs did not damage the zeolite’s structure, (ii) the presence of both H2O and O2 in the feed stream irreversibly reduces the adsorbent capacity due to nitrites and nitrates formation, and (iii) the presence of H2O alone with N2O still reduces the adsorbent capacity of the zeolites, which can be recovered through MW‐assisted regeneration at 350 °C. Moreover, the MW‐assisted TSA assured an energy and purge gas saving up to 63% and 82.5%, respectively, compared to a traditional regeneration process, resulting in effective process intensification.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4799451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact