Background: Additive manufacturing (AM) being an integral component of the production offers a wide variety of applications in the production of different components. The medical industry after the introduction of Additive Manufacturing has resulted in several advancements. The production of intricate patient-specific implants is one of such advancements which greatly assist a surgeon during a surgery. Orthopedic implants apart from possessing good mechanical strength are also expected to exhibit good tribological and corrosion behavior. As a result, the development of various orthopaedic implants and tools has become simple with the use of additive manufacturing. Objectives and Rationale: In the current paper an effort has been made to discuss actual scientific knowledge on the tribo-corrosive behavior of additive manufactured parts for orthopedic applications. Different studies dealing with the mechanisms of lubrication and friction in synovial joints have also been considered. A special focus has also been laid down to study the corrosive effect of implants on the human body. A section dedicated to texturing of orthopedic implants has also been provided. The paper further elaborates the different research challenges and issues related to the use of additive manufacturing for the production of optimized orthopedic implants. Conclusion: The study revealed that additive manufacturing has greatly aided in the manufacture of different orthopaedic implants with enhanced properties. However, a detailed study of the effect of processes like friction, wear, lubrication and corrosion in these implants needs to be done. The performance of these implants in the presence of various synovial fluids also needs to be addressed. However, the lack of more biocompatible ma- terials, scalability and cost issues hinder the widespread use of AM in the different orthopaedic applications.

Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications

Alessandro Ruggiero
2022-01-01

Abstract

Background: Additive manufacturing (AM) being an integral component of the production offers a wide variety of applications in the production of different components. The medical industry after the introduction of Additive Manufacturing has resulted in several advancements. The production of intricate patient-specific implants is one of such advancements which greatly assist a surgeon during a surgery. Orthopedic implants apart from possessing good mechanical strength are also expected to exhibit good tribological and corrosion behavior. As a result, the development of various orthopaedic implants and tools has become simple with the use of additive manufacturing. Objectives and Rationale: In the current paper an effort has been made to discuss actual scientific knowledge on the tribo-corrosive behavior of additive manufactured parts for orthopedic applications. Different studies dealing with the mechanisms of lubrication and friction in synovial joints have also been considered. A special focus has also been laid down to study the corrosive effect of implants on the human body. A section dedicated to texturing of orthopedic implants has also been provided. The paper further elaborates the different research challenges and issues related to the use of additive manufacturing for the production of optimized orthopedic implants. Conclusion: The study revealed that additive manufacturing has greatly aided in the manufacture of different orthopaedic implants with enhanced properties. However, a detailed study of the effect of processes like friction, wear, lubrication and corrosion in these implants needs to be done. The performance of these implants in the presence of various synovial fluids also needs to be addressed. However, the lack of more biocompatible ma- terials, scalability and cost issues hinder the widespread use of AM in the different orthopaedic applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4801652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact