The purpose of this paper is to provide a parallel acceleration of peer methods for the numerical solution of systems of Ordinary Differential Equations (ODEs) arising from the space discretization of Partial Differential Equations (PDEs) modeling the growth of vegetation in semi-arid climatic zones. The parallel algorithm is implemented by using the CUDA environment for Graphics Processing Units (GPUs) architectures. Numerical experiments, showing the performance gain of the proposed strategy, are provided.

First Experiences on Parallelizing Peer Methods for Numerical Solution of a Vegetation Model

Conte D.;Pagano G.;Paternoster B.
2022

Abstract

The purpose of this paper is to provide a parallel acceleration of peer methods for the numerical solution of systems of Ordinary Differential Equations (ODEs) arising from the space discretization of Partial Differential Equations (PDEs) modeling the growth of vegetation in semi-arid climatic zones. The parallel algorithm is implemented by using the CUDA environment for Graphics Processing Units (GPUs) architectures. Numerical experiments, showing the performance gain of the proposed strategy, are provided.
9783031104497
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4804251
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact