A multistep kinetic model in which solvent motion is treated in the framework of Marcus theory and the rates of the elementary electron transfer step are evaluated at full quantum mechanical level is proposed and applied to the calculation of the rates of intramolecular electron transfer reactions in rigidly spaced D–Br–A (D = 1,1′-biphenyl radical anion, Br = androstane) compounds, for five acceptors (A) in three organic solvents with different polarity. The calculated rates agree well with experimental ones, and their temperature dependence is almost quantitatively reproduced.

Electron Transfer Rates in Polar and Non-Polar Environments: a Generalization of Marcus’ Theory to Include an Effective Treatment of Tunneling Effects

Leo, Anna;Peluso, Andrea
2022-01-01

Abstract

A multistep kinetic model in which solvent motion is treated in the framework of Marcus theory and the rates of the elementary electron transfer step are evaluated at full quantum mechanical level is proposed and applied to the calculation of the rates of intramolecular electron transfer reactions in rigidly spaced D–Br–A (D = 1,1′-biphenyl radical anion, Br = androstane) compounds, for five acceptors (A) in three organic solvents with different polarity. The calculated rates agree well with experimental ones, and their temperature dependence is almost quantitatively reproduced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4804256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact