Quantum correlations provide a fertile testing ground for investigating fundamental aspects of quantum physics in various systems, especially in the case of relativistic (elementary) particle systems as neutrinos. In a recent paper, Ming et al. (Eur Phys J C 80:275, 2020), in connection with results of Daya-Bay and MINOS experiments, have studied the quantumness in neutrino oscillations in the framework of plane-wave approximation. We extend their treatment by adopting the wave packet approach that accounts for effects due to localization and decoherence. This leads to a better agreement with experimental results, in particular for the case of MINOS experiment.

Wave packet approach to quantum correlations in neutrino oscillations

Massimo Blasone;Silvio De Siena;Cristina Matrella
2021-01-01

Abstract

Quantum correlations provide a fertile testing ground for investigating fundamental aspects of quantum physics in various systems, especially in the case of relativistic (elementary) particle systems as neutrinos. In a recent paper, Ming et al. (Eur Phys J C 80:275, 2020), in connection with results of Daya-Bay and MINOS experiments, have studied the quantumness in neutrino oscillations in the framework of plane-wave approximation. We extend their treatment by adopting the wave packet approach that accounts for effects due to localization and decoherence. This leads to a better agreement with experimental results, in particular for the case of MINOS experiment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4806872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 13
social impact