The advent of additive manufacturing technologies significantly encouraged the development and usage of lattice structures. This paper aims to experimentally investigate the influence of dimension, building position, and orientation on the mechanical properties of Ti6Al4V trusses, manufactured by electron beam melting process, to be used in lattice cells. Specimens were manufactured considering the following parameters: truss diameter (1, 1.5, 2 mm), growth orientation (0 degrees, 45 degrees, 90 degrees), and specimen position inside the building chamber. Trusses with diameter of 1 mm showed inconsistent mechanical properties caused by the poor manufacturing quality. Specimen position was found to influence the analyzed mechanical properties. Unmelted powders were observed to affect the outer surfaces of all specimens and the whole cross-sections of specimens manufactured at 0 degrees. Specimens manufactured at 45 degrees with diameter of 2 mm demonstrated the best performances, whereas specimens manufactured at 90 degrees with diameter of 2 mm displayed the highest elongation at fracture.

Influence of dimension, building position, and orientation on mechanical properties of EBM lattice Ti6Al4V trusses

Sepe R
;
Giannella V;
2022

Abstract

The advent of additive manufacturing technologies significantly encouraged the development and usage of lattice structures. This paper aims to experimentally investigate the influence of dimension, building position, and orientation on the mechanical properties of Ti6Al4V trusses, manufactured by electron beam melting process, to be used in lattice cells. Specimens were manufactured considering the following parameters: truss diameter (1, 1.5, 2 mm), growth orientation (0 degrees, 45 degrees, 90 degrees), and specimen position inside the building chamber. Trusses with diameter of 1 mm showed inconsistent mechanical properties caused by the poor manufacturing quality. Specimen position was found to influence the analyzed mechanical properties. Unmelted powders were observed to affect the outer surfaces of all specimens and the whole cross-sections of specimens manufactured at 0 degrees. Specimens manufactured at 45 degrees with diameter of 2 mm demonstrated the best performances, whereas specimens manufactured at 90 degrees with diameter of 2 mm displayed the highest elongation at fracture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4807054
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact