Although it can effectively degrade refractory organic pollutants, advanced oxidation processes (AOPs) can be seriously interfered with the co-existing substance in salinity water. Herein, three-dimensional hierarchical cobalt-doped LaFeO3 perovskites (LaCo0.5Fe0.5O3) micron spheres composed of nano-rods were hydrothermally synthesized and applied to activate peroxymonosulfate (PMS) for degrading bisphenol A (BPA). Nearly 100% BPA was removed by LaCo0.5Fe0.5O3/PMS system in presence of more than 50 mM Cl- within only 2 min compared that of 30 min without Cl-, which was attributed to reactive chlorine species (RCS) including Cl- and HOCl with higher oxidation capacity. center dot OH and SO4 center dot- produced by LaCo0.5Fe0.5O3 activating PMS played crucial roles as the source of RCS in LaCo0.5Fe0.5O3/Cl-/PMS system. The synergistic effect between ROS and RCS promoted by the enhanced oxygen vacancies and the efficient redox recycling of Fe-III/Fe-II and Co-III/Co-II. Other anions like SO42- and NO3- hardly affected the BPA degradation. BPA degradation efficiency was also improved either in a wide pH range or in the presence of natural organic matters in salty water. This work also demonstrated the potential application of Fe-Co bimetallic LaCo0.5Fe0.5O3 activating PMS system for degradation of BPA or other organic micropollutants in seawater system. (C) 2021 Published by Elsevier B.V.

Highly efficient removal of bisphenol A by a novel Co-doped LaFeO3 perovskite/PMS system in salinity water

Pervez, Md Nahid;Naddeo, Vincenzo;
2021

Abstract

Although it can effectively degrade refractory organic pollutants, advanced oxidation processes (AOPs) can be seriously interfered with the co-existing substance in salinity water. Herein, three-dimensional hierarchical cobalt-doped LaFeO3 perovskites (LaCo0.5Fe0.5O3) micron spheres composed of nano-rods were hydrothermally synthesized and applied to activate peroxymonosulfate (PMS) for degrading bisphenol A (BPA). Nearly 100% BPA was removed by LaCo0.5Fe0.5O3/PMS system in presence of more than 50 mM Cl- within only 2 min compared that of 30 min without Cl-, which was attributed to reactive chlorine species (RCS) including Cl- and HOCl with higher oxidation capacity. center dot OH and SO4 center dot- produced by LaCo0.5Fe0.5O3 activating PMS played crucial roles as the source of RCS in LaCo0.5Fe0.5O3/Cl-/PMS system. The synergistic effect between ROS and RCS promoted by the enhanced oxygen vacancies and the efficient redox recycling of Fe-III/Fe-II and Co-III/Co-II. Other anions like SO42- and NO3- hardly affected the BPA degradation. BPA degradation efficiency was also improved either in a wide pH range or in the presence of natural organic matters in salty water. This work also demonstrated the potential application of Fe-Co bimetallic LaCo0.5Fe0.5O3 activating PMS system for degradation of BPA or other organic micropollutants in seawater system. (C) 2021 Published by Elsevier B.V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4807191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact