Since early-stage skin cancer identification can improve melanoma prognosis and significantly reduce treatment costs, AI-based diagnosis systems might greatly benefit patients suffering from suspicious skin lesions. The study proposes a cosine cyclical learning rate with a skin cancer classification model to improve melanoma prediction. The contributions of models involve three critical CNNs, which are standard deep feature extraction modules for the skin cancer classification in this study (Vgg19, ResNet101 and InceptionV3). Each CNN model applies three different learning rates: fixed learning rate(LR), Cosine Annealing LR, and Cosine Annealing with WarmRestarts. HAM10000 is a large collection of publicly available dermoscopic images dataset used for our experiments. The performance of the proposed approach was appraised through comparative experiments. The outcome has indicated that the proposed method has high efficiency in diagnosing skin lesions with a cosine cyclical learning rate.

Skin Cancer Classification based on Cosine Cyclical Learning Rate with Deep Learning

Carratu', M;Sommella, P;Lundgren, J
2022

Abstract

Since early-stage skin cancer identification can improve melanoma prognosis and significantly reduce treatment costs, AI-based diagnosis systems might greatly benefit patients suffering from suspicious skin lesions. The study proposes a cosine cyclical learning rate with a skin cancer classification model to improve melanoma prediction. The contributions of models involve three critical CNNs, which are standard deep feature extraction modules for the skin cancer classification in this study (Vgg19, ResNet101 and InceptionV3). Each CNN model applies three different learning rates: fixed learning rate(LR), Cosine Annealing LR, and Cosine Annealing with WarmRestarts. HAM10000 is a large collection of publicly available dermoscopic images dataset used for our experiments. The performance of the proposed approach was appraised through comparative experiments. The outcome has indicated that the proposed method has high efficiency in diagnosing skin lesions with a cosine cyclical learning rate.
978-1-6654-8360-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4807703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact