The production of prompt D0, Ds+, and Λc+ hadrons, and their ratios, Ds+/D0 and Λc+/D0, are measured in proton–proton collisions at s=13 TeV at midrapidity (|y|<0.5) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum (pT) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange Ds+/D0 ratio indicates no significant multiplicity dependence, the baryon-to-meson pT-differential Λc+/D0 ratio shows a multiplicity-dependent enhancement, with a significance of 5.3σ for 1<12 GeV/c, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The Λc+/D0 ratios as a function of pT present a similar shape and magnitude as the Λ/KS0 ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The pT-integrated ratios, extrapolated down to pT=0, do not show a significant dependence on multiplicity within the uncertainties.

Observation of a multiplicity dependence in the pT-differential charm baryon-to-meson ratios in proton–proton collisions at s=13 TeV

De Caro A.;De Gruttola D.;De Pasquale S.;Dello Stritto L.;Funicello N.;Virgili T.;
2022-01-01

Abstract

The production of prompt D0, Ds+, and Λc+ hadrons, and their ratios, Ds+/D0 and Λc+/D0, are measured in proton–proton collisions at s=13 TeV at midrapidity (|y|<0.5) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum (pT) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange Ds+/D0 ratio indicates no significant multiplicity dependence, the baryon-to-meson pT-differential Λc+/D0 ratio shows a multiplicity-dependent enhancement, with a significance of 5.3σ for 1<12 GeV/c, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The Λc+/D0 ratios as a function of pT present a similar shape and magnitude as the Λ/KS0 ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The pT-integrated ratios, extrapolated down to pT=0, do not show a significant dependence on multiplicity within the uncertainties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4807823
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 16
social impact