We consider m-th order linear, uniformly elliptic equations with non-smooth coefficients in Banach-Sobolev spaces generated by weighted Banach Function Spaces on a bounded domain. Supposing boundedness of the Hardy-Littlewood Maximal operator and the Calderòn-Zygmund singular integrals we obtain solvability in the small and establish interior Schauder type a priori estimates.
Higher order elliptic equations in weighted Banach spaces
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Lyoubomira Softova
						
						
						
							Membro del Collaboration Group
	
		
		
	
			2024
Abstract
We consider m-th order linear, uniformly elliptic equations with non-smooth coefficients in Banach-Sobolev spaces generated by weighted Banach Function Spaces on a bounded domain. Supposing boundedness of the Hardy-Littlewood Maximal operator and the Calderòn-Zygmund singular integrals we obtain solvability in the small and establish interior Schauder type a priori estimates.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| s11565-024-00505-9.pdf accesso aperto 
											Descrizione: articolo in open access
										 
											Tipologia:
											Versione editoriale (versione pubblicata con il layout dell'editore)
										 
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										407.95 kB
									 
										Formato
										Adobe PDF
									 | 407.95 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


