Nowadays advanced machine learning, computer vision, audio analysis and natural language understanding systems can be widely used for improving the perceptive and reasoning capabilities of the social robots. In particular, artificial intelligence algorithms for speaker re-identification make the robot aware of its interlocutor and able to personalize the conversation according to the information gathered in real-time and in the past interactions with the speaker. Anyway, this kind of application requires to train neural networks having available only a few samples for each speaker. Within this context, in this paper we propose a social robot equipped with a microphone sensor and a smart deep learning algorithm for few-shot speaker re-identification, able to run in real time over an embedded platform mounted on board of the robot. The proposed system has been experimentally evaluated over the VoxCeleb1 dataset, demonstrating a remarkable re-identification accuracy by varying the number of samples per speaker, the number of known speakers and the duration of the samples, and over the SpReW dataset, showing its robustness in real noisy environments. Finally, a quantitative evaluation of the processing time over the embedded platform proves that the processing pipeline is almost immediate, resulting in a pleasant user experience.
Few-shot re-identification of the speaker by social robots
Foggia P.;Greco A.;Roberto A.;Saggese A.;Vento M.
2022-01-01
Abstract
Nowadays advanced machine learning, computer vision, audio analysis and natural language understanding systems can be widely used for improving the perceptive and reasoning capabilities of the social robots. In particular, artificial intelligence algorithms for speaker re-identification make the robot aware of its interlocutor and able to personalize the conversation according to the information gathered in real-time and in the past interactions with the speaker. Anyway, this kind of application requires to train neural networks having available only a few samples for each speaker. Within this context, in this paper we propose a social robot equipped with a microphone sensor and a smart deep learning algorithm for few-shot speaker re-identification, able to run in real time over an embedded platform mounted on board of the robot. The proposed system has been experimentally evaluated over the VoxCeleb1 dataset, demonstrating a remarkable re-identification accuracy by varying the number of samples per speaker, the number of known speakers and the duration of the samples, and over the SpReW dataset, showing its robustness in real noisy environments. Finally, a quantitative evaluation of the processing time over the embedded platform proves that the processing pipeline is almost immediate, resulting in a pleasant user experience.File | Dimensione | Formato | |
---|---|---|---|
s10514-022-10073-6.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Non specificato
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.