Understanding the role played by genetic variations in diseases, exploring genomic variants, and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, the authors propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.

A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases

Foggia P.;Greco L.;Ritrovato P.
2022-01-01

Abstract

Understanding the role played by genetic variations in diseases, exploring genomic variants, and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, the authors propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4810075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact