In this work, we propose a novel data model that integrates and combines information on users belonging to one or more heterogeneous Online Social Networks (OSNs), together with the content that is generated, shared and used within the related environments, using an hypergraph-based approach. Then, we discuss how the most diffused centrality measures – that have been defined over the introduced model – can be efficiently applied for a number of data privacy issues, such as lurkers detection, especially in “interest-based” social networks. Some preliminary experiments using the Yelp dataset are finally presented.

Detection of Lurkers in Online Social Networks

Aniello Castiglione;
2017-01-01

Abstract

In this work, we propose a novel data model that integrates and combines information on users belonging to one or more heterogeneous Online Social Networks (OSNs), together with the content that is generated, shared and used within the related environments, using an hypergraph-based approach. Then, we discuss how the most diffused centrality measures – that have been defined over the introduced model – can be efficiently applied for a number of data privacy issues, such as lurkers detection, especially in “interest-based” social networks. Some preliminary experiments using the Yelp dataset are finally presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4810866
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact