In recent years, 3D printed scaffolds have been proposed as promising alternative to the conventional cell culture techniques. Scaffolds, indeed, allow the development of a higher number of cellular connections along the three dimensions favoring the cell regeneration, which make them particularly suitable in case of implants for deteriorate bones in old age patients. Besides the characteristics of biocompatibility and biodegradability fundamental for the integration of the scaffolds with the human body, the inner morphology, the permeability as well as the porosity are parameters of paramount relevance in the design of 3D-printed scaffolds influencing the flow of the blood through the cells and, thus, their metabolic functions. In the present work the influence of the internal geometry of 3D-printed scaffolds on the blood flow was investigated. Five cylindrical scaffolds having different internal geometry and different porosity were fabricated using parametric design technique. Numerical analysis of the blood flow within the designed structures was conducted by using CFD tool.

Analysis of the influence of inner morphology on blood flow in 3D-printed bone scaffolds

Fontana C.;Rubino F.;Cappetti N.;Carlone P.
2022-01-01

Abstract

In recent years, 3D printed scaffolds have been proposed as promising alternative to the conventional cell culture techniques. Scaffolds, indeed, allow the development of a higher number of cellular connections along the three dimensions favoring the cell regeneration, which make them particularly suitable in case of implants for deteriorate bones in old age patients. Besides the characteristics of biocompatibility and biodegradability fundamental for the integration of the scaffolds with the human body, the inner morphology, the permeability as well as the porosity are parameters of paramount relevance in the design of 3D-printed scaffolds influencing the flow of the blood through the cells and, thus, their metabolic functions. In the present work the influence of the internal geometry of 3D-printed scaffolds on the blood flow was investigated. Five cylindrical scaffolds having different internal geometry and different porosity were fabricated using parametric design technique. Numerical analysis of the blood flow within the designed structures was conducted by using CFD tool.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4811942
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact