In the article's control approach the nonlinear dynamic model of VSI-IMs undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the VSI-fed IM state vector and by the last sampled value of the system's control inputs vector. The linearization relies on Taylor series expansion and on the system's Jacobian matrices. For the approximately linearized model of the VSI-fed IM an H-infinity feedback controller is designed. This controller achieves the solution of the nonlinear optimal control problem for the VSI-fed IM under model uncertainty and external perturbations. For the computation of the controller's feedback gains an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system the H-infinity Kalman Filter is proposed as a state observer.

Nonlinear optimal control for VSI-fed asynchronous motors

Rigatos G.;Siano P.;
2022-01-01

Abstract

In the article's control approach the nonlinear dynamic model of VSI-IMs undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the VSI-fed IM state vector and by the last sampled value of the system's control inputs vector. The linearization relies on Taylor series expansion and on the system's Jacobian matrices. For the approximately linearized model of the VSI-fed IM an H-infinity feedback controller is designed. This controller achieves the solution of the nonlinear optimal control problem for the VSI-fed IM under model uncertainty and external perturbations. For the computation of the controller's feedback gains an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system the H-infinity Kalman Filter is proposed as a state observer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact