For the Wiener, Ornstein–Uhlenbeck,and Feller processes,we study the transition probability density functions with an absorbing boundary in the zero state. Particular attention is paid to the proportional cases and to the time-homogeneous cases, by obtaining the first-passage time densities through the zero state. A detailed study of the asymptotic average of local time in the presence of an absorbing boundary is carried out for the time-homogeneous cases. Some relationships between the transition probability density functions in the presence of an absorbing boundary in the zero state and between the first-passage time densities through zero for Wiener, Ornstein–Uhlenbeck, and Feller processes are proven. Moreover, some asymptotic results between the first-passage time densities through zero state are derived. Various numerical computations are performed to illustrate the role played by parameters.

On the Absorbing Problems for Wiener, Ornstein–Uhlenbeck, and Feller Diffusion Processes: Similarities and Differences

Virginia Giorno
Methodology
;
Amelia Giuseppina Nobile
Methodology
2023-01-01

Abstract

For the Wiener, Ornstein–Uhlenbeck,and Feller processes,we study the transition probability density functions with an absorbing boundary in the zero state. Particular attention is paid to the proportional cases and to the time-homogeneous cases, by obtaining the first-passage time densities through the zero state. A detailed study of the asymptotic average of local time in the presence of an absorbing boundary is carried out for the time-homogeneous cases. Some relationships between the transition probability density functions in the presence of an absorbing boundary in the zero state and between the first-passage time densities through zero for Wiener, Ornstein–Uhlenbeck, and Feller processes are proven. Moreover, some asymptotic results between the first-passage time densities through zero state are derived. Various numerical computations are performed to illustrate the role played by parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact