Image texture extraction and analysis are fundamental steps in computer vision. In particular, considering the biomedical field, quantitative imaging methods are increasingly gaining importance because they convey scientifically and clinically relevant information for prediction, prognosis, and treatment response assessment. In this context, radiomic approaches are fostering large-scale studies that can have a significant impact in the clinical practice. In this work, we present a novel method, called CHASM (Cuda, HAralick & SoM), which is accelerated on the graphics processing unit (GPU) for quantitative imaging analyses based on Haralick features and on the self-organizing map (SOM). The Haralick features extraction step relies upon the gray-level co-occurrence matrix, which is computationally burdensome on medical images characterized by a high bit depth. The downstream analyses exploit the SOM with the goal of identifying the underlying clusters of pixels in an unsupervised manner. CHASM is conceived to leverage the parallel computation capabilities of modern GPUs. Analyzing ovarian cancer computed tomography images, CHASM achieved up to ∼ 19.5 × and ∼ 37 × speed-up factors for the Haralick feature extraction and for the SOM execution, respectively, compared to the corresponding C++ coded sequential versions. Such computational results point out the potential of GPUs in the clinical research.

A CUDA-powered method for the feature extraction and unsupervised analysis of medical images

Rundo L.;
2021-01-01

Abstract

Image texture extraction and analysis are fundamental steps in computer vision. In particular, considering the biomedical field, quantitative imaging methods are increasingly gaining importance because they convey scientifically and clinically relevant information for prediction, prognosis, and treatment response assessment. In this context, radiomic approaches are fostering large-scale studies that can have a significant impact in the clinical practice. In this work, we present a novel method, called CHASM (Cuda, HAralick & SoM), which is accelerated on the graphics processing unit (GPU) for quantitative imaging analyses based on Haralick features and on the self-organizing map (SOM). The Haralick features extraction step relies upon the gray-level co-occurrence matrix, which is computationally burdensome on medical images characterized by a high bit depth. The downstream analyses exploit the SOM with the goal of identifying the underlying clusters of pixels in an unsupervised manner. CHASM is conceived to leverage the parallel computation capabilities of modern GPUs. Analyzing ovarian cancer computed tomography images, CHASM achieved up to ∼ 19.5 × and ∼ 37 × speed-up factors for the Haralick feature extraction and for the SOM execution, respectively, compared to the corresponding C++ coded sequential versions. Such computational results point out the potential of GPUs in the clinical research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact