The accuracy of any radiation therapy delivery is limited by target organ translocation and distortion. Bladder filling is one of the recognised factors affecting prostate translocation and distortion. The purpose of our study was to evaluate the effect of bladder volume on prostate translocation and distortion by using detailed three-dimensional prostate delineation on MRI. Fifteen healthy male volunteers were recruited in this prospective, institutional review board-approved study. Each volunteer underwent 4 different drinking preparations prior to imaging, with MR images acquired pre- A nd post-void. MR images were co-registered by using bony landmarks and three-dimensional contouring was performed in order to assess the degree of prostate translocation and distortion. According to changes in bladder or rectum distention, subdivisions were made into bladder and rectal groups. Studies with concomitant change in both bladder and rectal volume were excluded. Forty studies were included in the bladder volume study group and 8 in the rectal volume study group. The differences in rectal volumes yielded higher levels of translocation (p < 0.01) and distortion (p = 0.02) than differences in bladder volume. Moderate correlation of prostate translocation with bladder filling was shown (r = 0.64, p < 0.01). There was no important prostate translocation when bladder volume change was < 2-fold (p < 0.01). Moderate correlation of prostate distortion with bladder filling was shown (r = 0.61, p < 0.01). Bladder volume has a minimal effect on prostate translocation and effect on prostate distortion is negligible. Prostate translocation may be minimalised if there is < 2-fold increase in the bladder volume.

Three-dimensional MRI evaluation of the effect of bladder volume on prostate translocation and distortion

Rundo L.;
2020-01-01

Abstract

The accuracy of any radiation therapy delivery is limited by target organ translocation and distortion. Bladder filling is one of the recognised factors affecting prostate translocation and distortion. The purpose of our study was to evaluate the effect of bladder volume on prostate translocation and distortion by using detailed three-dimensional prostate delineation on MRI. Fifteen healthy male volunteers were recruited in this prospective, institutional review board-approved study. Each volunteer underwent 4 different drinking preparations prior to imaging, with MR images acquired pre- A nd post-void. MR images were co-registered by using bony landmarks and three-dimensional contouring was performed in order to assess the degree of prostate translocation and distortion. According to changes in bladder or rectum distention, subdivisions were made into bladder and rectal groups. Studies with concomitant change in both bladder and rectal volume were excluded. Forty studies were included in the bladder volume study group and 8 in the rectal volume study group. The differences in rectal volumes yielded higher levels of translocation (p < 0.01) and distortion (p = 0.02) than differences in bladder volume. Moderate correlation of prostate translocation with bladder filling was shown (r = 0.64, p < 0.01). There was no important prostate translocation when bladder volume change was < 2-fold (p < 0.01). Moderate correlation of prostate distortion with bladder filling was shown (r = 0.61, p < 0.01). Bladder volume has a minimal effect on prostate translocation and effect on prostate distortion is negligible. Prostate translocation may be minimalised if there is < 2-fold increase in the bladder volume.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812681
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact