Truss structures composed of members that work exclusively in tension or in compression appear in several problems of science and engineering, e.g., in the study of the resisting mechanisms of masonry structures, as well as in the design of spider web-inspired web structures. This work generalizes previous results on the existence of cable webs that are able to support assigned sets of nodal forces under tension. We extend such a problem to the limit analysis of compression-only “strut nets” subjected to fixed and variable nodal loads. These systems provide discrete element models of masonry bodies, which lie inside the polygon/polyhedron with vertices at the points of application of the given forces (“underlying masonry structures”). It is assumed that fixed nodal forces are combined with variable forces growing proportionally to a scalar multiplier (load multiplier), and that the supporting strut net is subjected to kinematic constraints at given nodal positions.
Limit analysis of strut nets
Amendola A.;Fortunato A.;Fraternali F.;
2022-01-01
Abstract
Truss structures composed of members that work exclusively in tension or in compression appear in several problems of science and engineering, e.g., in the study of the resisting mechanisms of masonry structures, as well as in the design of spider web-inspired web structures. This work generalizes previous results on the existence of cable webs that are able to support assigned sets of nodal forces under tension. We extend such a problem to the limit analysis of compression-only “strut nets” subjected to fixed and variable nodal loads. These systems provide discrete element models of masonry bodies, which lie inside the polygon/polyhedron with vertices at the points of application of the given forces (“underlying masonry structures”). It is assumed that fixed nodal forces are combined with variable forces growing proportionally to a scalar multiplier (load multiplier), and that the supporting strut net is subjected to kinematic constraints at given nodal positions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.