The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-free scenario. Both the frequency domain and the localization of energy are examined to illustrate the effectiveness of the noise-enhanced stability phenomenon, which manifests itself as a nonmonotonic behavior of the mean first-passage time for the breather as a function of the noise intensity. The influence of the mode's initial frequency on the results and their robustness against an additional thermal background are also addressed. Overall, the analysis highlights a counter-intuitive, positive role of noise in the breather's persistence.

Breather dynamics in a stochastic sine-Gordon equation: Evidence of noise-enhanced stability

Claudio Guarcello;
2023-01-01

Abstract

The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-free scenario. Both the frequency domain and the localization of energy are examined to illustrate the effectiveness of the noise-enhanced stability phenomenon, which manifests itself as a nonmonotonic behavior of the mean first-passage time for the breather as a function of the noise intensity. The influence of the mode's initial frequency on the results and their robustness against an additional thermal background are also addressed. Overall, the analysis highlights a counter-intuitive, positive role of noise in the breather's persistence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4817612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact