A Nijenhuis operator on a manifold is a (1, 1) tensor whose Nijenhuis torsion vanishes. A Nijenhuis operator N determines a Lie algebroid that knows everything about N. In this sense, a Nijenhuis operator is an infinitesimal object. In this paper, we identify its global counterpart. Namely, we characterize Lie groupoids integrating the Lie algebroid of a Nijenhuis operator. We illustrate our integration result in various examples, including that of a linear Nijenhuis operator on a vector space or, which is equivalent, a pre-Lie algebra structure.
Integrating Nijenhuis structures
Pugliese F.;Sparano G.;Vitagliano L.
2023-01-01
Abstract
A Nijenhuis operator on a manifold is a (1, 1) tensor whose Nijenhuis torsion vanishes. A Nijenhuis operator N determines a Lie algebroid that knows everything about N. In this sense, a Nijenhuis operator is an infinitesimal object. In this paper, we identify its global counterpart. Namely, we characterize Lie groupoids integrating the Lie algebroid of a Nijenhuis operator. We illustrate our integration result in various examples, including that of a linear Nijenhuis operator on a vector space or, which is equivalent, a pre-Lie algebra structure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AMPA-2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Non specificato
Dimensione
492.79 kB
Formato
Adobe PDF
|
492.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.