There are several well-established approaches to constructing finite difference schemes that preserve global invariants of a given partial differential equation. However, few of these methods preserve more than one conservation law locally. A recently-introduced strategy uses symbolic algebra to construct finite difference schemes that preserve several local conservation laws of a given scalar PDE in Kovalevskaya form. In this paper, we adapt the new strategy to PDEs that are not in Kovalevskaya form and to systems of PDEs. The Benjamin–Bona–Mahony equation and a system equivalent to the nonlinear Schrödinger equation are used as benchmarks, showing that the strategy yields conservative schemes which are robust and highly accurate compared to others in the literature.

Numerical preservation of multiple local conservation laws

Frasca Caccia Gianluca
;
2021-01-01

Abstract

There are several well-established approaches to constructing finite difference schemes that preserve global invariants of a given partial differential equation. However, few of these methods preserve more than one conservation law locally. A recently-introduced strategy uses symbolic algebra to construct finite difference schemes that preserve several local conservation laws of a given scalar PDE in Kovalevskaya form. In this paper, we adapt the new strategy to PDEs that are not in Kovalevskaya form and to systems of PDEs. The Benjamin–Bona–Mahony equation and a system equivalent to the nonlinear Schrödinger equation are used as benchmarks, showing that the strategy yields conservative schemes which are robust and highly accurate compared to others in the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4823114
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact