In this paper we discuss energy conservation issues related to the numerical solution of the semilinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the prescribed boundary conditions. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian partial differential equations, e.g., the nonlinear Schrödinger equation.

Energy conservation issues in the numerical solution of the semilinear wave equation

Frasca Caccia Gianluca
;
2015-01-01

Abstract

In this paper we discuss energy conservation issues related to the numerical solution of the semilinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the prescribed boundary conditions. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian partial differential equations, e.g., the nonlinear Schrödinger equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4823115
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 66
social impact