Finite difference schemes that preserve two conservation laws of a given partial differential equation can be found directly by a recently-developed symbolic approach. Until now, this has been used only for equations with quadratic nonlinearity. In principle, a simplified version of the direct approach also works for equations with polynomial nonlinearity of higher degree. For the modified Korteweg-de Vries equation, whose nonlinear term is cubic, this approach yields several new families of second-order accurate schemes that preserve mass and either energy or momentum. Two of these families contain Average Vector Field schemes of the type developed by Quispel and co-workers. Numerical tests show that each family includes schemes that are highly accurate compared to other mass-preserving methods that can be found in the literature.

Locally conservative finite difference schemes for the modified KdV equation

Frasca Caccia Gianluca;
2019-01-01

Abstract

Finite difference schemes that preserve two conservation laws of a given partial differential equation can be found directly by a recently-developed symbolic approach. Until now, this has been used only for equations with quadratic nonlinearity. In principle, a simplified version of the direct approach also works for equations with polynomial nonlinearity of higher degree. For the modified Korteweg-de Vries equation, whose nonlinear term is cubic, this approach yields several new families of second-order accurate schemes that preserve mass and either energy or momentum. Two of these families contain Average Vector Field schemes of the type developed by Quispel and co-workers. Numerical tests show that each family includes schemes that are highly accurate compared to other mass-preserving methods that can be found in the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4823131
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact