This paper introduces a new symbolic-numeric strategy for finding semidiscretizations of a given PDE that preserve multiple local conservation laws. We prove that for one spatial dimension, various one-step time integrators from the literature preserve fully discrete local conservation laws whose densities are either quadratic or a Hamiltonian. The approach generalizes to time integrators with more steps and conservation laws of other kinds; higher-dimensional PDEs can be treated by iterating the new strategy. We use the Boussinesq equation as a benchmark and introduce new families of schemes of order two and four that preserve three conservation laws. We show that the new technique is practicable for PDEs with three dependent variables, introducing as an example new families of second-order schemes for the potential Kadomtsev–Petviashvili equation.

A New Technique for Preserving Conservation Laws

Frasca Caccia Gianluca;
2022-01-01

Abstract

This paper introduces a new symbolic-numeric strategy for finding semidiscretizations of a given PDE that preserve multiple local conservation laws. We prove that for one spatial dimension, various one-step time integrators from the literature preserve fully discrete local conservation laws whose densities are either quadratic or a Hamiltonian. The approach generalizes to time integrators with more steps and conservation laws of other kinds; higher-dimensional PDEs can be treated by iterating the new strategy. We use the Boussinesq equation as a benchmark and introduce new families of schemes of order two and four that preserve three conservation laws. We show that the new technique is practicable for PDEs with three dependent variables, introducing as an example new families of second-order schemes for the potential Kadomtsev–Petviashvili equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4823132
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact